| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- ;; Add two polynomials together
- (defun poly+ (poly1 poly2)
- (add-terms (append poly1 poly2)))
- ;; Subtract one polynomial from another
- (defun poly- (poly1 poly2)
- (add-terms (append poly1 (flip-multipliers poly2))))
- ;; Multiply polynomials together
- (defun poly* (poly1 poly2)
- (clear-zero (add-terms (multiply-terms poly1 poly2))))
- ;; Returns the variable component of a singular polynomial
- (defun variable-symbol (single-poly)
- (car (car single-poly)))
- ;; Returns the exponent component of a singular polynomial
- (defun exponent (single-poly)
- (car (cdr (car single-poly))))
- ;; Returns the multiplier component of a singular polynomial
- (defun multiplier (single-poly)
- (car (cdr single-poly)))
- ;; Returns a polynomial with all the multipliers multiplied by -1
- (defun flip-multipliers (poly)
- (map 'list #'(lambda (x)
- (list (list (variable-symbol x) (exponent x))
- (* (multiplier x) -1))) poly))
- ;; Returns an added term if the addition is succesful, nil otherwise
- (defun term-addition (term1 term2)
- (if (and (equal (variable-symbol term1) (variable-symbol term2))
- (equal (exponent term1) (exponent term2)))
- (list (list (variable-symbol term1) (exponent term1))
- (+ (multiplier term1) (multiplier term2)))
- nil))
- ;; Returns the failed term if the addition fails, nil otherwise
- (defun term-failure (term1 term2)
- (if (and (equal (variable-symbol term1) (variable-symbol term2))
- (equal (exponent term1) (exponent term2)))
- nil
- term2))
- ;; Returns true if a polynomial contains only unique terms
- (defun poly-unique-terms? (poly)
- (cond ((equal poly nil) T)
- (T (if (some #'(lambda (x) (and (equal (flatten
- (variable-symbol x))
- (flatten
- (variable-symbol
- (car poly))))
- (equal (flatten (exponent x))
- (flatten (exponent (car poly))))))
- (cdr poly))
- nil
- (poly-unique-terms? (cdr poly))))))
- ;; Functional flatten from Rosetta Code:
- ;; http://rosettacode.org/wiki/Flatten_a_list#Common_Lisp
- (defun flatten (x &optional stack out)
- (cond ((consp x) (flatten (rest x) (cons (first x) stack) out))
- (x (flatten (first stack) (rest stack) (cons x out)))
- (stack (flatten (first stack) (rest stack) out))
- (t out)))
- ;; This function replaces a full list of nils with the replace-term, otherwise
- ;; returns the list
- (defun useful-replace-nil (addition-seq replace-term)
- (if (equal (remove nil addition-seq) nil)
- (list replace-term)
- addition-seq))
- ;; Removes all zeroes from the polynomial
- (defun clear-zero (poly)
- (remove nil (map 'list #'(lambda (x)
- (if (or (equal (multiplier x) 0) (equal (exponent x) 0)) nil x))
- poly)))
- ;; Recursively adds all the terms in the list
- (defun add-terms (poly)
- (cond
- ((poly-unique-terms? poly) (clear-zero poly))
- (T (add-terms (remove nil (append (map 'list #'(lambda (x)
- (term-failure (car poly) x))
- (cdr poly))
- (useful-replace-nil (map 'list #'(lambda (y)
- (term-addition (car poly) y))
- (cdr poly)) (car poly))))))))
- (defun map-onto-poly (single-poly poly)
- (map 'list #'(lambda (x) (multiply-singles single-poly x)) poly))
- (defun multiply-singles (single-poly1 single-poly2)
- (cond
- ((equal (variable-symbol single-poly1) (variable-symbol single-poly2))
- (list (list (variable-symbol single-poly1)
- (if (typep (exponent single-poly1) 'list)
- (map 'list #'+ (exponent single-poly1)
- (exponent single-poly2))
- (+ (exponent single-poly1) (exponent single-poly2))))
- (* (multiplier single-poly1) (multiplier single-poly2)))
- )
- (T
- (list (list (list (variable-symbol single-poly1)
- (variable-symbol single-poly2))
- (list (exponent single-poly1)
- (exponent single-poly2)))
- (* (multiplier single-poly1) (multiplier single-poly2))))))
- (defun multiply-terms (map-poly poly)
- (cond
- ((equal map-poly nil) nil)
- (T (remove nil (append (map-onto-poly (car map-poly) poly)
- (multiply-terms (cdr map-poly) poly))))))
- ; (poly+ '(((x 2) 3)) '(((y 2) 4)))
- ; (poly+ '(((x 2) 3) ((y 2) 3)) '(((y 2) 4)))
|